Cross-validation in complex surveys

Thomas Lumley Amaia Iparragirre

2025-11-27

Cross-validation

With an **exchangeable** set of observations

- Randomly divide data into training and test sets
- ► Fit to training set
- Evaluate loss in test set
- Repeat so that every observation is in test set the same number of times

Honest estimate of generalisation error for a model-fitting strategy

Complex Surveys

- Strata: generalisation is to same strata
- Clusters: generalisation is between clusters
- Weights: relevant losses are weighted

The Flainian Pobble Bead is exchangeable only for other Flainian Pobble Beads

— HhGttG

NHANES

In a two-year period:

- ► About 15 strata: geographic × rurality
- Two clusters per stratum: city/county
- Weights: depend on cluster size, stratum size, neighbourhood demographics

Big problem: weights

If you don't use sampling weights you are optimising the sample predictive accuracy, not the population

Case–control sample: prevalence in sample is 50%

Many machine-learning methods can handle case weights that multiply the loss for each observation

Smaller problem: clusters, strata

Information leakage

- Stratum information should leak from test to training set (same strata in population)
- Cluster information should not leak from test to training set (different clusters in population)

A stratum **should** be split between test and training, a cluster **should not** be split

Replicate weights

Survey statisticians have developed analogues of bootstrap and jackknife for complex samples

These follow the same principles

- Generalisation is to the same strata, so each stratum should be in all resamples
- Generalisation is to different clusters, so clusters should not be split

Replicate weights

For reproducibility (and because they don't trust you) survey designs publish sets of resampling weights that everyone uses

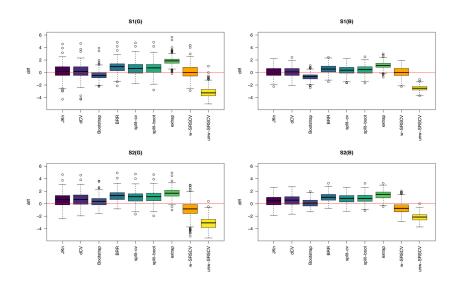
 r_{ik} is the weight for observation i in resample k

- jackknife weights: zero for one cluster, increased for other clusters
- bootstrap weights: 0, 1, 2, 3 times sampling weight
- split-half weights: 0 or 2 times sampling weight
- **.**..

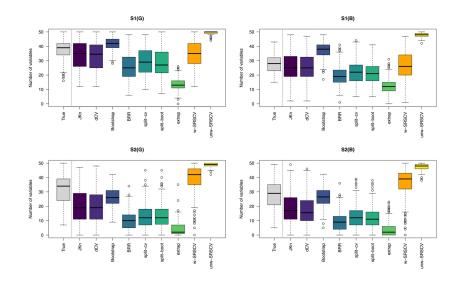
Cross-validation

Test set: observations with weight (approximately) zero in this replicate

Training set: observations with weight not approximately zero in this replicate


Simple example: cluster jackknife leaves out one cluster at a time

Simulations


- logistic or normal lasso with 50 observed variables, population size 10⁵
- stratified cluster sample with 5 strata, 4 clusters per sample, total of 330 or 500 units
- six replicate-weight approaches, plus using one stratum as test, plus design-agnostic CV with and without weights
- How close is the penalty to the optimal penalty?
- How close is the number of variables selected to the optimal number?

Iparragirre, A., Lumley, T., Barrio, I., & Arostegui, I. (2023). Variable selection with LASSO regression for complex survey data. Stat, 12(1), e578.

Simulations

Simulations

User interface

```
withCrossval(rclus1,
    api00~api99+ell+stype+mobility+enroll,
    trainfun=ftrain,
    testfun=ftest,
    intercept=FALSE, loss="MSE",
    tuning=0:3)
```

User interface

```
ftrain=function(X,y,w,tuning) {
   m<-glmnet(X,y,weights=w)
   lambda<-m$lambda[min(which(m$df>=tuning))]
   list(m,lambda)
}

ftest=function(X, trainfit, tuning){
   predict(trainfit[[1]], newx=X, s=trainfit[[2]])
}
```

Summary

- Weights matter for cross-validation
- Design matters for cross-validation
- ▶ ... a bit
- survey::withCrossval coming soon for survey 4.5
- Should basically work for any prediction technique where cross-validation works